Lecture # 24 – Cost-Benefit Analysis

I. Steps to Cost-Benefit Analysis (continued)

4. Discounting

- The costs and benefits will occur at different times. To compare them fairly, it is important to discount costs and benefits that occur in the future.
 - $_{\circ}$ $\,$ The idea is to compare a flow of benefits and costs into a single value.
- The <u>present value</u> of a future amount of money is the maximum amount you would be willing to pay today for the right to receive that money in the future.
 - Present value accounts for the opportunity cost of not investing the money elsewhere.
 - Example:
 - You have \$100 now
 - If you put it in the bank, you will get 5% interest
 - Next year, that money is worth (1 + 0.05)x100 = \$105
 - After two years, it is worth (1.05)(1.05)(100) = (1.05)²(100) = \$110.25
 - General rule:
 - PV = present value (the principal that you invest) r = interest rate
 - Future Value = $FV = PV(1 + r)^t$
 - As a result, you wouldn't give up \$100 now for \$100 next year, because you could invest the money and get \$105 next year.
 - The <u>present value</u> of \$100 next year is the most you would give up today to get \$100 next year
 - FV = \$100 = PV(1.05) = \$100
 - PV = 100/1.05 = \$95.24
 - General rule
 - PV = FV/(1 + r)^t
 - For a stream of payments:

•
$$PV = FV + FV/(1+r) + FV/(1+r)^2 + ... + FV/(1+r)^t$$

- For payments forever:
 - PV = FV/r
- In these examples, r represents the discount rate. The <u>discount rate</u> reflects the relative value a person places on future consumption compared to current consumption.
 - Lower values show a greater preference for future consumption.
 - A high discount rate says that current consumption is important to you.
 - A low discount rate says that future consumption is important to you.

- What about inflation?
 - When we are discounting costs & benefits, we must remember that inflation affects the interpretation.
 - The key is to be consistent.
 - If all the dollar values are real dollars already adjusted for inflation – use a real rate of interest.
 - If all the dollar values are nominal dollars we need to adjust for inflation. We use a nominal rate of interest.
 - Recall our example from before. Suppose inflation is 3%. Then, \$105 next year is only worth 105/1.03 = \$101.94 today.
 - The present value now is 100(1 + r) = \$101.94
 - This implies a rate of return of approximately 2%.
 - Inflation lowers the real return on our investment.
 - For those interested in the derivation of the real rate of return, define the following terms:
 - r = real rate of interest
 - γ = rate of inflation
 - m = nominal rate of interest
 - the nominal return $(1 + m) = (1 + r)(1 + \gamma) = 1 + r + r\gamma + \gamma$
 - => m = r + $r\gamma$ + γ
 - or $r = (m \gamma)/(1 + \gamma)$
 - In practice, rγ is very small, so a useful approximation is:
 - m = r + γ or
 - $r = m \gamma$
 - E.g. nominal rate = 5%, inflation = 3% => real rate = 2%
 - Key point: if nominal prices are used, discount using a nominal rate of interest, so that inflation is accounted for. If real prices are used, inflation has already considered. A nominal rate would double count inflation. Therefore, use a real rate of interest.
 - In general, the real rate of interest will be around 3-5%. In the next class we will discuss more carefully how to select the discount rate.
- What about capital?
 - Since we are discounting, the cost of capital should be included in the year the capital is purchased.
 - Depreciation is not necessary. The full cost is already considered when the cost of purchasing the capital is recorded. Adding depreciation would lead to double counting.
 - However, if the capital is not completely used, the salvage value should be added as a benefit at the end of the program.

5. Interpreting the Results

- Once our calculations are complete, how do we interpret the final results? There are several alternative criteria.
 - 1. <u>Net present value (NPV)</u> the present value of benefits minus the present value of costs
 - If NPV is positive, the project is worth doing.
 - If several projects are under consideration, choose the one with the highest NPV.
 - Advantage: not sensitive to whether something is recorded as a cost or a benefit.
 - Example:
 - Consider two projects: both have costs in first year, followed by annual benefits received forever
 - Discount rate = 5%

Α				В				
Year	Benefit	Cost	Year	Benefit	Cost	-		
0	\$0	\$1000	0	\$0	\$100			
1+	\$100	\$0	1+	\$20	\$0			
$NPV_A = 0 - \$1,000 + \frac{\$100 - 0}{0.05} = -\$1,000 + \$2,000 = \$1,000$ $NPV_B = 0 - \$100 + \frac{\$20 - 0}{0.05} = -\$100 + \$400 = \$300$								

- Project A has the higher NPV
- 2. <u>Internal Rate of Return</u> the discount rate that would make a project's net present value equal zero.
 - A project is worthwhile if the IRR is greater than the opportunity cost of funds for the community (that is, the appropriate discount rate).
 - Problem: Doesn't account for the size of the project
 - Continue with the example from above

<i>IRR</i> _A : -\$1,000 + \$100/r = 0	<i>IRR_B</i> : -\$100 + \$20/r = 0
\$100/r = \$1,000	\$20/r = \$100
\$100/\$1,000 = r	\$20/\$100 = r
r = 0.1	r = 0.2

 Although project A has a higher net present value, project B has a higher internal rate of return.

- 3. <u>Benefit –cost ratio</u> the ratio of the present value of a stream of benefits to the present value of the stream of costs.
 - A project is acceptable if BC ratio > 1.
 - Problems
 - Does not take the scale of the project into account.
 - Continue with the example from above Project A: \$2,000/\$1,000 = 2 Project B: \$400/\$100 = 4
 - Although project A has a higher net present value, project B has a higher benefit-cost ratio.
 - More importantly, benefit-cost ratios are sensitive to whether items are recorded as costs or benefits.

		•	Example:			
	Α					3
_	Year	Benefit	Cost	Year	Benefit	Cost
	0	\$0	\$35,000	0	\$40,000	\$0
	1	\$40,000	\$0	1	\$0	\$40,000
NP	$V_A = 0$) — \$35,00	$00 + \frac{\$40,00}{1.0}$		-\$35,000 ·	+ \$38,095
			1.0 \$0 - \$4	5 40.000		
NP	$V_B = S$	\$40.000 -	$0 + \frac{40}{10}$	$\frac{10,000}{15} =$	= \$40,000 -	- \$38,095
			• Pr	oiect A h	nas the hig	her NPV
					also has th	
			A:		\$40,000/1	•
					\$35,000	
				B/C	= 1.088	
			B:	B =	\$40,000	
				C =	\$40,000/1	.05 = \$38
					= 1.05	
		•			costs and	
				• •	roject B's	
			•	e.g. a co	st savings	,
-			4			3
	Year	Benefit	Cost	Year	Benefit	Cost
	0	\$0	\$35 <i>,</i> 000	0	\$10,000	-\$30,000
	1	\$40 <i>,</i> 000	\$0	1	\$0	\$40 <i>,</i> 000
					emains the	
					et benefit i	
					e the bene	efit-cost ra
			B:		\$10,000	
					-30,000 +	
					= 10,000/	
				• •	ct B looks	
					efine bene retation o	

• As a result of all of this, NPV is the best method to use.

- The interpretation of net present value (NPV) depends on the situation. Key questions:
 - 1. Are there several projects being considered?
 - If not, the project is acceptable if the NPV is positive.
 - If there are several alternative projects, choose the one with the highest NPV.
 - 2. Does the community budget limit the size of the project?
 - If so, choose the combination of projects that maximize net benefits, given the community's budget constraints.
 - Example:

.

	Benefits	Costs	Net Benefits	Benefits/Costs
Project A	10	1	9	10
Project B	22	10	12	2.2
Project C	8	4	4	2
Project D	4	2	2	2
Project E	8	10	-2	0.8

- In this case, if there is no constraint, choose A, B, C & D
 - If there is a constraint, find the best combination
 - For example, consider a \$10 budget
 - Choosing A, C, & D give a net benefit of \$15, whereas B alone only gives net benefit of \$12.
- A note on the benefit-cost ratio
 - This is an example of how the benefit/cost ratio doesn't select the project with the highest NPV.
 - NPV is highest for B, but the benefit/cost ratio is highest for A.
 - However, when we face a budget constraint, the benefit/cost ratio helps us identify the project that has the most "bang for the buck."
- 3. Can the scale of the project be varied?
 - If so, choose the size where marginal benefits = marginal costs.

*** THE FOLLOWING NOTES DISCUSS THE LAST STEPS OF COST-BENEFIT ANALYSIS. WHILE WE MAY NOT HAVE TIME TO COVER THESE IN CLASS, I INCLUDE THEM HERE FOR COMPLETENESS ****

6. Equity Considerations

- So far, we have said nothing about the distribution of benefits. Of course, these are important, especially in the political arena.
- Transfer payments are shifts of resources from one group to another that do not involve a net change in the value of resources available to society as a whole.
 - Since there is no net change in the value to society, no resources are used, and no new value is created.
 - However, all of the transfers that we have discussed have important equity considerations.
 - A project that passes whose benefits exceed the costs may nonetheless be rejected if the distribution of benefits and costs is seen as unfair.
 - Examples of transfer payments:
 - Taxes paid (such as the emissions fees we discussed with externalities).
 - Unemployment benefits
 - Benefits provided to specific groups (e.g. welfare payments)
 - Two principles for identifying and measuring transfer payments:
 - At the level of particular groups, transfer payments resemble conventional benefits and costs.
 - That is, resources they are willing to pay to acquire, or resources expended by the group represent a loss of opportunity value to the group.
 - However, for society as a whole, the sum of transfer payments to particular groups must sum to zero.
 - Since no value is created or destroyed, one group's benefit is another group's cost.
 - Transfer payments merely represent shifts of resources.
 - For example, secondary benefits are often offset by secondary costs.
 - Higher land values near the expanded DestinyUSA would be offset by lower demand for land in other locations, such as shopping areas on Erie Blvd.

- How can we deal with distributional issues in cost-benefit analysis?
 - All of the transfers that we have discussed have important equity considerations.
 - A project that passes whose benefits exceed the costs may nonetheless be rejected if the distribution of benefits and costs is seen as unfair.
 - However, we cannot put a dollar value on the changes in distribution.
 - Rather, the goal is to assess the changes, and then ask whether these changes are acceptable, or if they alter our perception of the program.
 - If possible, the benefits and costs falling on each group can be quantified.
 - However, even if this is not possible, judgments can be made.
- Guidelines for defining groups
 - Groups should not overlap, and should add up to comprise the total society affected by the program.
 - Overlapping groups lead to double counting costs and benefits.
 - The sum of transfer payments across groups should be zero.

7. Sensitivity Analysis

- CBA analyses always include assumptions. Examples of assumptions include:
 - What are the benefits of the project?
 - What are the costs?
 - For example, are some costs, such as pollution, unmeasured?
 - What discount rate should be used?
- As a result, sensitivity analysis is important.
 - You should show how the results change if key assumptions are varied.
- How to analyze sensitivity to key assumptions:
 - Determine a range of plausible values for uncertain costs or benefits.
 - Re-estimate the project's value using the highest and lowest values in the range.
 - Do the conclusions change?
 - Is NPV positive for some values, but negative for others?
 - Presenting results for different discount rates is also a good idea.
 - Summarize the results and compare them with the original results using the most likely assumptions.
 - Where possible, indicate the likelihood that the cost or benefit will be different from the most likely value.
 - o Identify which uncertain variables are most important.
 - In the example below, the results are sensitive to the true value of variable Y, but not to the true value of variable X

			variable X	
	_	High	Medium	Low
	High	+	+	+
Variable Y	Medium	-	-	-
	Low	-	-	-