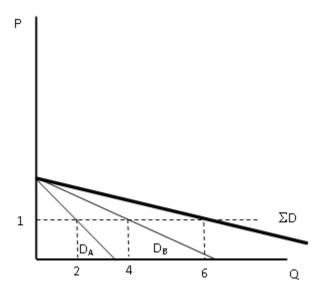
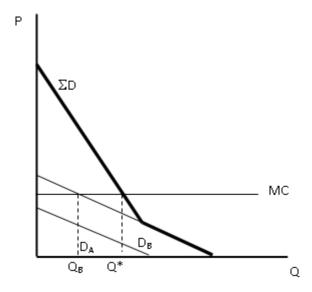

Lecture # 19 – Public Goods

I. Public Goods

- <u>Public goods</u> are goods that can benefit everyone, and from which no one can be excluded.
- Two characteristics:
 - 1. <u>non-rival</u> -- one person's enjoyment or consumption of the good does not prevent others from using it.
 - 2. non-excludable -- people cannot be prevented from using the good.
 - Thus, it is difficult to collect money for the good.


II. Efficient Allocation of a Public Good

- Because public goods can be enjoyed by everyone, we need the summation of each individual's marginal benefit.
 - o A vertical summation is used, since the goods are non-rival



- In the figure above, D_A (purple line) represents the demand curve for person A, and D_B (blue line) is the demand curve for person B.
 - One unit of the public good is worth \$4 to person A, and \$5 to person B.
 - Since both can enjoy the good at the same time, the total marginal benefit of one unit of the good is \$9.
 - We get this by summing vertically -- adding A's valuation on top of B's.
 - The dark line represents the combined demand.
 - In this case, with just two people, once A's valuation of the good goes to 0, only B's demand matters.

o Contrast with private goods, for which we use *horizontal summation*.

- In the figure above, D_A represents the demand curve for person A, and D_B is the demand curve for person B.
- Here, each person needs to have their own unit of the good. They cannot share.
 - At a price of \$1, person A wants 2 units of the good, and person B wants 4 units.
 - Thus, we need a total of 6 units at a price of \$1.
 - We get this by adding the quantity demanded of each person across to get the darker black line.
- The efficient allocation is where the sum of the marginal benefit curves equals marginal cost.
- However, both characteristics of a public good keep us from getting to the efficient solution. First, consider non-rivalness.
 - Since each individual is concerned with his or her own marginal benefit, underprovision results.
 - This results from the non-rival nature of a public good. When deciding how much of a public good to purchase, each person considers their own benefits. However, they do not consider that their purchase also benefits others.

- The above diagram illustrates the problem. Because the MC of the good is above person A's demand, person A is unwilling to provide any of the public good.
 - Person B is willing to provide some (Q_B).
 - However, this is less than the efficient amount (Q*), which is where $MC = \Sigma D$.
- This is because each individual only cares about the benefit that they get from purchasing the good. They don't consider benefits to others.
 - Efficient provision: $\Sigma MB = MC$.
 - Private market provision: MB = MC.
 - But ΣMB > MB. Thus, the result is that ΣMB > MC.
 - So in the private market, we have *underprovision*.
 - Because individuals do not provide enough of a public good on their own, government intervention is necessary.

- The following numerical example illustrates
 - Consider a lake with three homes along a polluted lake
 - Each of the homeowners is willing to pay a certain amount to clean up the lake

	Marginal willingness to pay (\$ per year)				
	Homeowner	Homeowner	Homeowner		
Q	Α	В	С	Total	MC
1	110	60	50	220	55
2	85	40	40	165	60
3	70	20	30	120	75
4	55	10	20	85	85
5	45	0	10	55	110
6	30	0	5	35	140
7	15	0	0	15	180

- Each cleans up as long as MB ≥ MC for them. 3 units of pollution are cleaned up.
 - A willing to pay for 2 units of cleanup
 - B willing to pay for 1 unit of cleanup
 - C won't pay for anything on their own
- \circ Efficient solution is where ΣMB = MC
 - This would be where 4 units of pollution are cleaned up.
- The above inefficiency occurs because of non-rivalness. Non-excludability leads to a second problem: the free rider problem:
 - A <u>free rider</u> is a consumer or producer that benefits from the actions of others without paying.
 - Even if we could come up with a way to overcome the non-rival problem by sharing the cost of a public good, we still need a way to ensure that everyone pays their share. The ability of people to free ride makes this difficult.
 - Because of the free rider problem, public goods are usually provided by the government, which levies taxes to pay for the goods.
 - The free rider problem also makes it difficult to determine how much value any one individual places on a public good.
 - Unfortunately, as we know from the last lecture, majority rule voting may not help us here.

- o What can be done about the free rider problem?
 - <u>Compulsory provision</u> the government can collect taxes from everyone to make them pay a share of the cost.
 - Social pressure pressure people into contributing "voluntarily."
 - Most likely to work for small groups (e.g. stores in a mall contributing to a security guard's salary).
 - Mergers if individuals combine into a single entity, the free rider problem is no longer relevant.
 - <u>Privatization</u> if exclusion is possible, the free rider problem no longer exists.