Lecture \# 16 - Perfect Competition and Economic Welfare/Monopolies

I. The Efficiency of the Competitive Market

- Recall the key questions regarding the allocation of scarce resources that we introduced on the first day of class:
- How to utilize resources most efficiently
- What to produce?
- How to produce it?
- E.g. how much capital and how much labor

How to allocate the goods and services that are produced?

- Now, consider how a perfectly competitive market answers these questions.
- From marginal analysis, recall that resources are put to their highest value uses when marginal benefit = marginal cost.
- Note that, in perfect competition, the market equates marginal benefit and marginal cost.
- Recall that the demand curve tells us how much consumers are willing to pay for goods. This is the marginal benefit that they receive.
- At the same time, recall that the supply curve comes from a firm's marginal cost curve.
- Thus, equilibrium occurs where marginal benefit and marginal cost are equal. Also, note that the market price also equals marginal benefit and marginal cost.
- Thus, both consumer tastes (represented by demand) and opportunity costs of using resources (represented by the supply curve) determine what is produced.
- Furthermore, profit-maximizing firms will want to produce these goods as efficiently as possible. This determines how resources are allocated to production.
- Thus, cost minimization leads to efficient use of inputs.
- Note how this relates to our theories of consumer and producer behavior.
- Consumers choose bundles so that $M U_{X} / M_{Y}=P_{X} / P_{Y}$
- Producers set P = MC
- Thus, in perfect competition:
- $M U_{X} / M U Y Y=P_{X} / P_{Y}=M C_{X} / M C_{Y}$
- Prices act as signals to balance the desires of consumers with the costs of using scarce resources to produce goods.
- In perfect competition, prices act as a signal of:
- The value of the good (relates to MU)
- The cost of the good (relates to MC)
- The interpretation is that the simple act of individuals, each maximizing their own self-interest, leads to an efficient outcome.
- Adam Smith referred to this as the "Invisible Hand" of the market.
- Both firms and consumers maximize their own self-interest in response to the signals sent by market prices.
- Note that deviations from equilibrium are less efficient, because marginal cost and marginal benefit are not equal.
- This is the deadweight loss that we discussed earlier in the semester.
- For example, if quantity is too low, marginal benefit is greater than marginal cost. The benefits of additional quantity outweigh the additional costs.
- Market failure occurs when the equalities discussed above do not hold.
- In these instances, government intervention may produce better results.
- This may occur because a market does not fit the assumptions of perfect competition, or it may occur because the government intervenes in a competitive market.
- The articles on water pricing illustrates what can happen when a government intervenes.
- Because water is subsidized in many places, the price consumers pay does not reflect the true costs of using scarce water resources.
- As a result, users do not have incentive to conserve water.
- However, these subsidies are popular because they help ensure access to water for low-income families.
- Thus, alternative policy options, such as block pricing, are often considered as alternatives.

II. Marginal Revenue for a Monopolist

- We now begin to look at what happens if our assumptions about perfect competition are not satisfied. Our first example is monopoly.
- Monopoly -- An industry that has only one seller of the product, for which there are no close substitutes.
- Because the monopolist is the market, a monopolist has control over price.
- Compare to a firm in perfect competition, in which each individual firm is a price taker.
- To increase quantity sold, a monopolist must lower its price on each unit sold. This has two effects:
- The monopolist makes money on the additional quantity sold.
- The monopolist loses money on the goods that it was already selling, as these are now sold at a lower price.
- This can be seen on the graph below

- Initially, at a price of P_{A}, the monopolist sells Q_{A} of the good.
- Revenue equals areas $A+B$
- To sell one more unit of the good, the monopolist must lower the price to P_{B}.
- Revenue equals areas A + C
- The monopolist gains area C, but loses B
- B represents the money no longer earned because the price is lower than before.
- Thus, marginal revenue = C - B
- Note that area C equals P_{B}, since the difference between Q_{A} and Q_{A+1} equals 1.
- Thus, MR at the new quantity must be less than P_{B}.
- Area B is the change in price X initial quantity
- Thus, for a monopolist, marginal revenue is less than price.
- The table below illustrates.
- It uses the following demand curve: $P=6-\mathrm{Q}$.
- Note that, as the monopolist sells more, it must lower the price.
- For instance, total revenue at $Q=1$ is $\$ 5$.
- If the monopolist wants to sell two units, it will charge a price of $\$ 4$. This price holds for each unit sold.
- This brings in one new sale, and thus $\$ 4$ of revenue (area C on the previous graph).
- But the monopolist loses $\$ 1$ (area B on the previous graph) on the first unit, which could have sold for $\$ 5$.
- Thus marginal revenue is $\$ 3$ (= C - B on the previous graph)

\mathbf{P}	\mathbf{Q}	$\mathbf{T R}$	$\mathbf{M R}$	AR
6	0	0	--	--
5	1	5	5	5
4	2	8	3	4
3	3	9	1	3
2	4	8	-1	2
1	5	5	-3	1
0	6	0	-5	0

- Bisection rule:
- For a linear demand curve, the marginal revenue curve bisects the demand curve.
- E.g.: If $P=a-b Q, M R=a-2 b Q$.
- In the example below, demand is $P=6-Q$.
- Thus, MR = $6-2 \mathrm{Q}$.
- Note that the marginal revenue curve goes through the x-axis at a quantity of 3 , compared to a quantity of 6 for the demand curve. Thus, it cuts this distance in half. That is why this is called the bisection rule.

III. Profit Maximization for a Monopolist

1. As before, we find the optimal quantity by setting $M R=M C$.

- However, note that P does not equal MR for a monopolist!

2. Since P does not equal $M R$, we get P by plugging Q^{*} into the demand curve.

3. Profits can be calculated in the same way as in perfect competition.

IV. Monopoly vs. Perfect Competition

- In perfect competition, $P=M R=M C$, whereas in monopoly, $P>M R=M C$.
- Thus, price is greater than marginal cost in a monopoly, so it no longer reflects the scarcity of the good.
- Quantity is lower with a monopoly, and price is higher.
- Also, there is deadweight loss with a monopoly, since some potentially beneficial trades do not take place.

- In the illustration above, the monopolist finds where $M R=M C$. It chooses Q_{M} and P_{M} (shown in blue).
- If, instead, the industry consisted of several small firms, so that we had perfect competition, the MC curve would be the supply curve. The market would operate where $M C=D$, ending up with QPC and PPC (shown in green).
- Note how consumer and producer surplus changes between perfect competition and monopoly.
- Perfect competition:
- Consumer surplus: $A+B+C+D+E$
- Producer surplus: $\mathrm{F}+\mathrm{G}+\mathrm{H}$
- Monopoly:
- Consumer surplus: A + B
- Producer surplus: C + D + F +G
- Deadweight loss: E + H
- Note also how this inefficiency relates to the equations for efficiency in perfect competition. In a monopoly, P > MR. Thus:
- $M U_{x} / M U Y_{Y}=P_{x} / P_{Y}>M R x / M R_{Y}=M C x / M_{Y}$
- In this case, the marginal utility from the last unit of good X, for example, is greater than the marginal cost. There will be a deadweight loss.
- Unlike perfect competition, there is no entry when monopolies make profits (due to barriers to entry). Therefore, profits persist in the long run.
- Numerical example
- Assumptions:
- Demand: $P=10-Q$
- $M C=2$
- $F C=0$
- Maximizing profits for a monopolist
- Profits are maximized where $\mathrm{MR}=\mathrm{MC}$. We use the bisection rule to find the MR curve, which is $M R=10-2 Q$.

$$
\begin{gathered}
M R=10-2 Q=2=M C \\
8=2 Q \\
Q=8 / 2=4
\end{gathered}
$$

- To get the price, we need to look at the demand curve, to see how much consumers are willing to pay for 4 units. We get:

$$
P=10-Q=10-4=\$ 6
$$

- The graph for this market is shown below.

- Calculate profits:

$$
\begin{gathered}
\text { profit }=T R-T C \\
\text { profit }=P x Q-T C \\
\text { profit }=(6)(4)-2(4) \\
\text { profit }=24-8=\$ 16
\end{gathered}
$$

- Compare to perfect competition
- MC becomes the supply curve in perfect competition, so we set MC = Demand

$$
\begin{gathered}
P=10-Q=2=M C \\
Q=8
\end{gathered}
$$

- The price will equal the MC, which is $\$ 2$
- Profits $=T R-T C=(2)(8)-(2)(8)=0$.
- Compare welfare under perfect competition and monopoly

- Perfect competition
- Consumer surplus $=\mathrm{ABCDE}=0.5(8)(8)=\$ 32$
- Producer surplus =\$0
- Monopoly:
- Consumer surplus $=\mathrm{A}+\mathrm{B}=0.5(4)(4)=\$ 8$
- Producer surplus $=C D=(4)(4)=\$ 16$
- Compare
- CS has fallen by $\$ 24$.
- PS increases by only $\$ 16$.
- Thus, $\$ 8$ of welfare has disappeared. This is the deadweight loss.
- Graphically, this is area $\mathrm{E}=0.5(4)(4)=\$ 8$.

