Lecture # 17 – Theories of Diffusion

I. S-Shaped Diffusion Curves

- Key questions:
 - What is the rate of adoption and innovation?
 - What variables affect this rate?
 - How does policy affect diffusion?
- Early studies of diffusion
 - Early studies of diffusion focused on agricultural technologies.
 - The first studies were done by anthropologists and sociologists, not economists.
 - The diffusion traditions of various disciplines began to merge in the 1960s.
 - Ryan-Gross study of hybrid corn.
 - This was a sociology study.
 - Hybrid corn, introduced by Iowa State in 1928, had yields 15-20% higher than open pollinated corn.
 - It had been adopted by most lowa farmers by 1940.
 - Ryan and Gross studied what factors influenced its adoption.
 - They found that communication between previous and potential adopters was important.
 - They found an S-shaped rate of adoption.
 - This result is still typical today.
 - o S-shaped adoption curves
 - The S-shaped adoption curve is derived from a symmetric bellshaped curve that describes the distribution of adopters over time.
 - Even today, most diffusion studies find a similar pattern.
 - Sociologists focus on the following reasons to explain the S-shaped curves:
 - 1. What is the <u>relative advantage</u> of the innovation over the existing technology?
 - 2. Is the technology <u>compatible</u> with potential adopters current way of doing things, and with current social norms?
 - 3. How complex is the technology?
 - 4. <u>Trialability</u> -- can the technology be tested?
 - 5. Observability -- how easy is it to evaluate the innovation after it has been tried?
 - Five categories of adopters:
 - 0. Innovators
 - 1. Early adopters
 - 2. Early majority
 - 3. Late majority
 - 4. Laggards

II. Examples

- Economists have added to the diffusion literature by examining individual differences in diffusion.
- Griliches' (1957) hybrid corn study
 - Griliches looked at the diffusion of hybrid corn both within regions (as did Ryan/Gross) and across regions.
 - Goal: to explain why individual adoption decisions vary:
 - The "acceptance problem" what explains variation in adoption rates within a region.
 - The "availability problem" what explained the timing of the development of hybrid corn for specific areas.
 - Separate breeds of hybrid corn needed to be invented for different regions.
 - Griliches did this by fitting an S-shaped logistic trend diffusion curve to data on the percentage of corn area planted with hybrid seed.
 - Define P as the percentage planted with hybrid seed
 - $P = K/(1 + e (a + b^*t))$
 - K = the ceiling, or equilibrium value
 - b = the rate of growth coefficient
 - a = constant of integration (positions curve on the time scale)
 - Key features of the curve:
 - <u>Origin</u>: the starting point. Griliches defines as date at which 10% of a region's corn was hybrid.
 - This is meant to indicate commercial availability of hybrid corn.
 - Average lag between technical availability and commercial availability was 2 years.
 - Agricultural stations did more work on hybrid corn in regions where corn was important (e.g. Iowa, Wisconsin). The date of origin is earlier here.
 - <u>Slope</u>: indicates the rate of acceptance
 - <u>Ceiling</u>: measures the percentage of acceptance when usage stabilizes
 - Interpretation: differences in rate of acceptance (slope) and level of acceptance (ceiling) can be explained by differences in how profitable it is to shift to hybrid corn.
- Diffusion of industrial technology
 - The standard S-shaped diffusion curve has also been found in studies of industrial technology diffusion.
 - Mansfield (1968) looked at factors influencing interfirm and intrafirm diffusion.
 - Looked of diffusion of 12 different technologies in 4 different industries.
 - Like Griliches, he found that key variables were:
 - Profitability

- The proportion of firms already using the technology
- Example: diffusion of diesel locomotives in the railroad industry.
 - The first diesel locomotive made in the US was built in 1924. This was 11 years after the diesel locomotive was introduced in Europe.
 - Early diesels were slow, heavy, and had little power.
 - They were primarily used where smoke or fire was a concern.
 - In 1933, General Motors introduced an improved diesel.
 - By 1935, 50% of major American railroads had begun to use diesel.
 - Innovators tended to be large rail lines. They did not haul much coal.
 - Lines that hauled coal were reluctant to switch.
 - Coal was cheap for them.
 - They also did not want to alienate their major customers.
 - By 1940, most diesel engines were used for switching purposes.
 - Material shortages during WWII delayed adoption.
 - By end of WWII, about 10% of total locomotive stock was diesel.
 - Around this time, advantages of diesel became clear:
 - Due to engineering refinements, price per horsepower fell relative to steam engines.
 - Large savings possible by eliminating the need to service and repair steam locomotives.
 - As usage spread, uncertainties about performance and maintenance fell.
 - The rate of replacement (the switch to diesel) varied by railroad.
 - The transition from 10% to 90% replacement of steam by diesel took, on average, 9 years.
 - 20% of firms did this in 3 to 4 years.
 - 10% of firms, however, needed more than 14 years.
 - Mansfield used regression techniques to explain differences. Significant variables included:
 - Profitability of investing in diesel locomotive
 - Interfirm differences in size and liquidity
 - Differences in the starting date
 - Note as well that adoption often involves large fixed costs
 - Thus, firms often adopt when making big changes in the firms

- Text messaging
 - Text messaging has been adopted more slowly in the United States than in Europe or Japan.
 - o Why?
 - Availability of substitutes
 - Because they must compete with cheap landline calls, the costs of cell phone calls are cheaper in the United States.
 - Similarly, free local calls enables inexpensive Internet service, so that instant messaging developed as an alternative to text messaging.
 - Hall provides other examples where substitutes matter, such as automatic washing machines
 - Technology standards
 - Less regulation in the U.S. led to the development of
 - competing, but incompatible, standards for text messaging.
 - Note the importance of network effects
 - The value of text messaging depends on the number of other users.
 - This is true for many IT technologies.
 - Developing standards leads to faster diffusion.
 - But, as we discussed in class, should standards be set by the government or by industry?
- Multivariate processes
 - The preceding examples have been binary one technology replaces another.
 - Often, diffusion is a multivariate process several different technologies compete for market share over a period of time.
 - The Basic Oxygen furnace in steel presents an example
 - Experiments to use oxygen in the steel production process began in the mid-19th century.
 - However, largely because low-cost oxygen was unavailable, the idea was not widely applied until after WWII.
 - The first successful process was developed by Linz-Donawitz, an Austrian firm, in 1952.
 - Typically, the basic oxygen furnace is cheaper than open-hearth or electric furnaces.
 - The capital cost of an oxygen converter is about 1/2 that of open hearth.
 - However, oxygen converters are only effective if a blast furnace is nearby, since the oxygen converter must be charged with hot metal.
 - Less scrap metal is needed to charge the oxygen converter than other furnaces.
 - Thus, oxygen converters were adopted more quickly where scrap metal prices were high.

- Country differences in adoption
 - Adopted quickly in Austria, where it was invented.
 - Also adopted quickly in Japan and Netherlands.
 - Both countries had rapidly expanding steel industries. They could add capacity without waiting until existing equipment needed to be replaced.
 - Adopted more slowly in France, Italy, and UK. US was in the middle.

III. Models of Diffusion

- Recent work on diffusion has focused on trying to explain the prevalence of the S-shaped diffusion curve.
- The epidemic model
 - The epidemic model considers information to be the key to diffusion.
 - As more people adopt the technology, information of it spreads quickly, leading to a period of rapid adoption.
 - The epidemic model models technology as a "contagious disease."
 - Adoption occurs as potential adopters learn about the new technology.
 - Adoption is slow at first, as few people (or firms) know about the technology.
 - The more people "infected" (that is, those that have adopted), the more likely others will also be "infected."
 - Thus, as information spreads, a period of rapid adoption follows.
 - Shortcoming
 - This model assumes that, once potential adopters learn of a technology, they will use it.
 - This model assumes the quality of the technology is the same over time.
 - o Implications
 - Adoption includes a positive externality. The decision to adopt makes it more likely that others will also learn about the innovation.
 - This suggests that gradual diffusion is the result of a market failure.
 - It also suggests that, until market saturation is reached, the economy is in disequilibrium.
- Recent modifications focus on equilibrium.
 - These models assume there is perfect information on the technology, so that the epidemic model is not relevant.
 - Rather, there are differences among users that explain gradual diffusion.
 - Firms must pay a cost, *c_t*, to adopt the technology at any time *t*.
 This price changes over time.
 - Each firm weighs the benefits of adoption at time *t* against the cost of adoption at time *t*.

- As the costs or benefits of adoption change, the number of adopters changes.
- Implication:
 - Gradual diffusion is rational. It is the result of profit-maximizing behavior, rather than a market failure.
 - The *Economist* article "Lock and Key" is an example.
 - It suggests that lock-in is not a market failure, as suggested by the path dependence theory.
 - Rather, it is a rational result, because the cost of switching technologies is too high to justify only small benefits.
 - Types of equilibrium models:
 - 1. Rank (or probit) models
 - Potential users differ in some important characteristic.
 - Thus, some firms benefit from adoption more than others do.
 - The earlier example of diesel for railroads that did or did not ship coal would be an example.
 - The net benefits can be ranked across firms.
 - Those with the highest ranks go first.
 - Examples of rank effects found to be important:
 - Firm size (generally a positive effect)
 - R&D expenditure
 - Market share
 - Market structure (ambiguous effect)
 - Input prices
 - Rose/Joskow (1990): utilities adopt fuelsaving technologies more quickly when fuel prices are high.
 - Characteristics of the technology
 - Government regulations
 - Rose/Joskow (1990) find that government-owned utilities are slower to adopt new technologies than privatelyowned ones.
 - Hannan and McDowell (1984) find that banking and branch restrictions increased profitability of ATM machines.
 - 2. Stock models
 - As the number of users of the new technology increases, the gross benefits from adoption decline.
 - Can be due to the effect of technology adoption on prices or due to prices in factor markets (supply effects).
 - 3. Order models
 - The firm's position in the adoption order determines its gross return from adoption.

- Early adopters typically get a higher gross return.
 - This suggests the first-mover advantage dominates the advantage of waiting for better technologies.
- However, costs are important to get net return from adoption.
- Thus, there is a tradeoff between first mover advantage versus higher early costs
- Recent work combines equilibrium and epidemic models. These models are hazard models.
 - Hazard models combine a baseline epidemic diffusion curve with firm-specific variables to capture the effects above.
 - Firms adopt when the NPV of adoption is:
 - Positive, so that adoption is profitable, and
 - Higher than it would be if the firm waited until a later date to adopt
 - Thus, unlike the other models, there may be a benefit to waiting.
 - Allows the researcher to capture the magnitude of each effect.
 - Recent results suggest the firm-specific effects are more important.

IV. Diffusion of Energy Efficient Technologies

- In many cases, policy does not play an important role in diffusion decisions, which are primarily market-driven
- Energy efficiency provides an example where government policy does play an important role
 - Many studies find that both consumers and firms underinvest in energy efficiency, even when NPV is positive
 - Energy efficiency is often seen as a low cost way of reducing CO₂ emissions
 - This literature also offers an opportunity to consider lessons from behavioral economics on diffusion
- Is the energy efficiency gap real?
 - While engineering studies suggest more energy efficiency is possible, might there be rational reasons for not adopting?
 - Hidden costs
 - Administrative costs or time costs of installation
 - Decreased quality (e.g. lower lighting quality)
 - Consumer heterogeneity
 - Different preferences
 - Purchase a lower-efficient appliance if won't use it much

- A recent study finds conservatives are less likely to use high-efficient light bulbs
- Uncertainty
 - Will energy prices fall in the future?
- Rebound effect
 - Engineering estimates may overestimate potential savings
 - Assume perfect installation and maintenance
 - May ignore potential behavioral changes if energy use becomes cheaper
- Market failures
 - Nonetheless, there are several market failures that will lead to suboptimal investment in energy efficiency
 - Note that each has different policy solutions, so understanding which market failures matter is important, and is a question of ongoing research
 - Externalities
 - Some of the benefits of improved energy efficiency (e.g. reduced pollution) are benefits to society as a whole, rather than the potential adopter (not in article)
 - Imperfect information
 - Buyers and sellers may have different information about potential savings
 - Principal-agent
 - The person installing the technology might not be rewarded for doing so (e.g. landlord/tenant relationship)
 - Credit constraints
 - Investments often have high up-front costs
 - Will need to finance initial investment to reap future savings
 - Learning by using
 - Early users provide positive externality of their experience to future users
 - Regulatory failures
 - Electricity market regulation often means electricity not priced at marginal cost
 - Gillingham and Palmer suggest this is less important, since prices are often above efficient levels
- Recent work in behavioral economics suggests behavioral anomalies may also play a role
 - Behavioral economics combines psychology and economics, and notes cases where observed behavior differs from what traditional economic models predict
 - Systematic biases create a difference between <u>decision utility</u> and <u>experienced utility</u>.
 - Decision utility is the utility consumers maximize at the time of choice
 - Experienced utility is the utility consumers later realize as a result of a prior decision

- Behavioral anomalies that lead to a difference between decision utility and experienced utility are <u>behavioral failures</u>
- Note that if preferences are not stable over time, using consumer decisions to infer utility will lead to incorrect estimates
- Nonstandard preferences: Preferences that violate standard neoclassical assumptions
 - Self-control problems
 - A behavioral failure
 - Appears as time-inconsistent preferences
 - People often take long-term view for distant outcomes, but use higher discount rates for the near future
 - Reference-dependent preferences
 - Consumer's utility depends on a reference point
 - For example, consumers exhibit loss aversion
 - Decline in utility from a loss is much larger than gain in utility from gaining similar income
 - Will this be more concerned with potential bad outcomes (e.g. what if I invest in energy efficiency and fuel prices fall) than in potential savings
 - Not necessarily a behavioral failure (decision utility might not differ from experienced utility)
- Nonstandard beliefs
 - Systematically incorrect beliefs about the future
 - While people's beliefs about future energy prices may be wrong, it is not clear that they are systematically wrong
- Nonstandard decision making
 - Decision processes that do not follow neoclassical assumptions
 - All could be behavioral failures
 - Limited attention
 - Follows from bounded rationality (Simon, 1955)
 - Consumers simplify complex decisions by focusing on only a subset of available information
 - Salience matters here
 - E.g. sales taxes added at register less salient than taxes added to list price
 - Paying tolls vs. EZPass
 - Regarding energy efficiency, limited attention may be a reason consumers don't think much about fuel efficiency when buying a car
 - Framing of choices
 - Presentation of information affects choices
 - Important for properly designing energy efficiency labels

- Suboptimal decision heuristics
 - Use of rules of thumb for decision making
 - E.g. favoring first name on ballot
 - Again, not directly studied in energy efficiency decisions
- Policies to promote energy efficiency
 - Understanding what failures need to be addressed (e.g. market failures, behavioral failures) is important
 - Market failures
 - Pigouvian tax
 - Addresses environmental externalities from energy usage
 - Subsidies are an alternative
 - However, by lowering costs, may have rebound effect
 - Also must consider costs of raising funds
 - Providing information
 - Product labeling is an example
 - Financing programs
 - Some communities fund energy efficient investments and let consumers pay it back through utility bills (e.g. from resulting savings)
 - o Behavioral failures
 - Will information alone be enough?
 - Several studies find that providing information alone does not have a large impact
 - Houde (2013) finds that Energy Star labeling has positive net benefits, but also crowds out other energy-saving activity
 - Social norms
 - Information can also be used to change preferences
 - For example, providing information on the energy consumption of neighbors
 - Has been found to reduce energy consumption
 - One study found the savings similar to what would happen if prices rose 11-20%
 - Energy efficiency standards may also be an option
 - Imposes the "correct" choice on a consumer
 - May be inappropriate for some in the case of heterogeneous preferences
 - Liberal paternalism (e.g. "Nudges")
 - Give people freedom to make choices, but frame choices in ways to lead to good decisions)
 - For example, make energy efficiency a default option