Lecture \# 7 -- Taxes

I. Taxes

- Steps to solving a mathematical example
- Solve for the pre-tax equilibrium.
- Shift in the demand (supply) curve and find the new equation. This is the demand (supply) curve faced by suppliers (consumers).
- Remember to only shift one of the curves!
- Recall that Pc = Ps + tax. Thus, to shift supply, note that the demand curve equals the old supply curve plus the amount of the tax.
- Similarly, the equation above can be rewritten as $P_{s}=P_{c}-$ tax. Thus, to shift demand, note that the old supply curve equals the old demand curve minus the amount of the tax.
- In either case, the result is to change the y-intercept of either the demand or supply equation by the amount of the tax.
- Find the intersection of the new demand (supply) curve with the old supply (demand) curve. This gives you the new equilibrium quantity.
- To find the prices, plug the quantity into the original demand and supply curves.
- Plugging Q into the original demand curve gives you the price consumers pay.
- Plugging Q into the original supply curve gives you the price suppliers get to keep.
- To check your work, the difference between these prices should be equal to the tax.
- Here are the numbers from the example in class today

A numeric example on the tax effect:
Demand: Pc = 34-2Q
Supply: Ps = $1+\mathrm{Q}$
Without a tax, we calculate the initial equilibrium price and quantity

$$
\begin{aligned}
& P c=P s \\
& 34-2 Q=1+Q \\
& 33=3 Q \\
& =>Q=11 \\
& P c=P s=1+11=\$ 12
\end{aligned}
$$

Now suppose the government levies a tax: Tax = \$3 per unit
Key Step: $\mathrm{Pc}=\mathrm{Ps}+\mathrm{Tax}$
$34-2 Q=1+Q+3$
$34-2 Q=4+Q$ (shifted supply curve)

$$
30=3 Q
$$

$\Rightarrow \mathrm{Q}=10, \mathrm{Pc}=34-2 * 10=14, P s=1+Q=11$
*Double check: Pc - Ps = 14-11 = \$3
To calculate the changes in consumer surplus and producer surplus
The initial equilibrium (without a tax):
CS $=0.5^{*}(34-12)^{*} 11=\$ 121$
PS $=0.5^{*}(12-1)^{*} 11=\$ 60.5$
CS + PS = \$181.5
After the tax is levied:
CS' $=0.5^{*}(34-14) * 10=\$ 100$
PS' $=0.5^{*}(11-1)^{*} 10=\$ 50$
Tax Revenue $=$ 3*10 $=30$
CS' + PS' + TR = \$180
$D W L=181.5-180=\$ 1.5$
*Double check the area of the triangle (base: tax per unit; height: change in the equilibrium quantity)
DWL $=0.5^{*}(11-10)^{*} 3=\$ 1.5$
Incidence of Tax (Tax = \$3 per unit)
$\mathrm{P}_{0}=\$ 12, \mathrm{Pc}=\$ 14, \mathrm{Ps}=\$ 11$
Change in Pc = \$ 2
Change in Ps = \$ 1
So we see that consumers bear a larger burden of the tax in this case.

- Below is an illustration showing the deadweight loss and the revenue collected from a tax.
- As shown in class, consumer and producer surplus will be smaller after the tax.
- Remember to always use the original demand and supply curves to find consumer and producer surplus.
- Some of the original surpluses now go the government as tax revenue.
- However, some simply disappears. This is deadweight loss.
- The deadweight loss occurs because some sales that took place before the tax (and were beneficial to consumers and producers) no longer occur.
- The deadweight loss is a measure of the inefficiency of the tax.
- Elasticity is also important for efficiency.
- Since deadweight loss comes from beneficial transactions that no longer take place, it is greater when there is elastic supply and demand.

II. Tax Incidence

- The economic burden of the tax does not depend on the legal burden.
- Taxes will generally be shifted, so that both parties bear part of the burden. The amount shifted is the same whether the legal incidence falls on consumers or producers.
- Note in the figures below that prices shift by the same amount whether the legal burden is on suppliers (left) or consumers (right).

- Elasticity and tax incidence
- The greater share of the economic burden of a tax falls on the more inelastic party. Economists refer to the share of the economic burden as tax incidence.
- Intuition: inelastic parties are less able to change their behavior in response to a tax. Thus, they have a harder time avoiding the tax.
- Here is an example with an inelastic supply curve:
- Because supply is inelastic, the drop in supplier price is greater than the increase in consumer price. Suppliers bear a larger burden of the tax.

- Compare to a case where supply is elastic. Here, the increase in consumer price is greater. Consumers bear a larger burden of the tax.

- Note as well that it doesn't matter whether supply or demand has shifted. In one case above, I shifted demand. In the other I shifted supply.
- The Post-Standard article on the gasoline tax cap is an example.
- Consumers can avoid the increased tax by going to another county. They have more flexibility than gas station owners in Onondaga County, who cannot move.
- Similarly, the Economist article on property taxes discusses why taxing land is efficient.
- Finally, the article on corporate income taxes highlights several factors that affect how likely the burden of the corporate tax could be passed on to others, including labor.
- Note how these examples relate to elasticity.

III. Subsidies

- In the case of a subsidy, we shift the demand or supply out by the amount of the subsidy
- The example below shifts demand
- Quantity increases because of the subsidy
- As before, we find the prices using the original supply and demand curves
- Consumers pay a bit less (Pc)
- Since the government adds the subsidy, sellers make a bit more money (Ps)

- As before, the result is the same if we shift supply instead:

- The Economist article on wage subsidies shows that the same rules for incidence apply for subsidies.
- In this case, since a subsidy provides a benefit, it is the inelastic party that benefits from the subsidy.
- In the wage subsidy example, studies show that most of the benefit goes to workers (suppliers of labor). That suggests that labor supply is more inelastic, as illustrated below.
- Note that the price paid to workers goes up by a lot (Ps) but firms only pay a little less than they did before (Pc). Thus, most of the revenues from the subsidy are going to workers.

