- Possible solutions to the intermittency problem
 - Larger grids easier to balance
 - Demand-response strategies (e.g. "smart grid")
 - Energy storage

- Energy Storage
 - Because wind and solar are intermittent sources, they cannot fully power the electric grid unless power can be stored
 - While costs are falling, energy storage is still expensive
 - Thus, most renewable sources are not paired with energy storage

- Energy Storage Techniques
 - Pumped hydro storage
 - Excess power used to pump water to a reservoir
 - Currently lowest cost storage option
 - Example: Denmark and Norway work in tandem to provide power
 - When winds are favorable, Denmark exports wind energy to Norway. When not, Norway exports hydropower to Denmark.
 - Essentially, the hydropower not used when wind energy is exported is "stored" energy
 - Globally, most energy storage today uses pumped hydro, but future expansion will be limited
 - Requires appropriate geography
 - Potential environmental effects of building new dams

- Energy Storage Techniques
 - Batteries
 - Most often use lithium-ion batteries
 - Short-duration (≈30 minutes, to smooth spikes in power grid)
 - Long-duration (for storing intermittent power for later use)
 - Most commonly used energy storage in US
 - Costs have fallen dramatically since 2010
 - Barriers to battery development:
 - Safety concerns (e.g. overheating)
 - Patchwork of local regulations
 - New materials needed to get costs lower

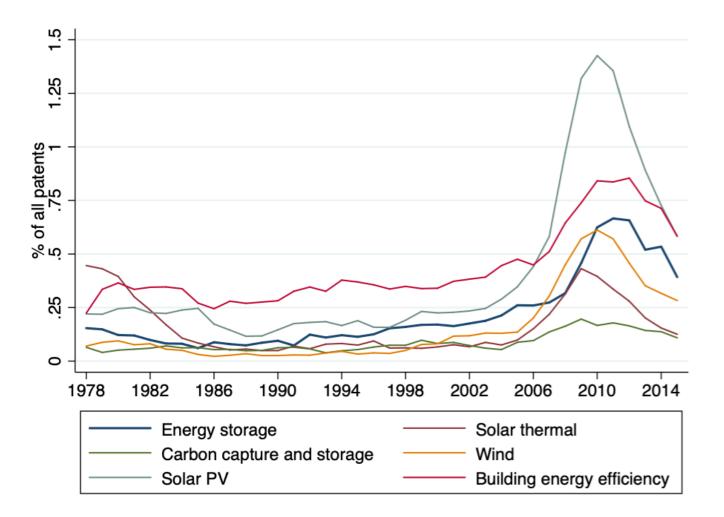
- Zero-carbon options for processes that cannot run on electricity
 - Biofuels
 - Currently, this is the largest source of renewable energy
 - However, much of this is low-technology uses in developing countries. Presumably usage of these fuels will fall as countries grow.
 - Other fuels include things such as ethanol
 - Carbon released when burned is same as carbon absorbed as the plant grows
 - But requires energy to produce, so only zero-carbon if produced using zero-carbon energy
 - Corn ethanol in US averages only 39% lower CO2 emissions than the gasoline it replaces
 - Is there enough farmland to grow the needed feedstocks as well as supplying necessary food supply?

- Zero-carbon options for processes that cannot run on electricity
 - Carbon capture and storage (a/k/a carbon sequestration)
 - Carbon is captured and stored underground or used in an industrial process
 - Can be done before combustion (removing carbon from fuel) or afterwards (removing from waste gases)
 - Currently used for enhanced oil recovery
 - Storage space is an issue
 - Oil & gas reservoirs, deep saline aquifers, and un-minable coal beds are options
 - Must be stored in formations with impermeable cap rock to avoid leakage
 - Eventually will dissolve in water
 - Thus, safety has been a concern for some

- Zero-carbon options for processes that cannot run on electricity
 - Carbon capture and storage (a/k/a carbon sequestration)
 - Carbon is captured and stored underground or used in an industrial process
 - Storage space is an issue
 - Because of economies of scale, only appropriate for large emitters, such as power plants
 - New technologies would remove CO2 from the air ("direct air capture")
 - These technologies are still very expensive
 - Require lots of energy: will that be carbon-free?
 - As a result, firms are reluctant to invest in the technology
 - Occidental's plant would sell carbon credits to generate revenue

- Zero-carbon options for processes that cannot run on electricity
 - Hydrogen
 - Obtained by splitting water into hydrogen and oxygen
 - However, this process is energy-intensive and has high fixed costs
 - Could be used to balance grid: ramp up electrolyzers when there is excess electricity
 - Only makes sense in applications where electricity cannot be used directly
 - » Examples include heavy duty transportation and industry
 - » Already used in some industries, but with hydrogen produced using fossil fuels

- Zero-carbon options for processes that cannot run on electricity
 - Hydrogen
 - Obtained by splitting water into hydrogen and oxygen
 - Clean alternatives are more expensive
 - "Green" hydrogen uses renewable electricity as an energy source
 - "Blue" hydrogen uses fossil fuels combined with carbon capture and storage


- Zero-carbon options for processes that cannot run on electricity
 - Hydrogen
 - Obtained by splitting water into hydrogen and oxygen
 - Clean alternatives are more expensive
 - Infrastructure needed to deliver hydrogen
 - E.g. the challenge for heavy-duty trucking: both batteries or hydrogen fuel cells will require new networks

- While penetration of renewable energy sources is growing, achieving significant reductions in carbon emissions requires further development and deployment
- Innovation is needed to:
 - Reduce the cost of existing technologies
 - Develop new breakthrough technologies
 - Develop complementary technologies (e.g. grid management, energy storage) to better integrate intermittent renewables into transmission grids
- Thus, considering how policy can promote innovation on clean technologies is important
 - Until the past few years, energy R&D efforts have remained relatively flat since the 1970s

Historical Patent Counts, Selected Energy Technologies

Source: Popp et al. (2022)

- Technological change proceeds in three stages:
 - Invention: an idea must be born

- Technological change proceeds in three stages:
 - Invention: an idea must be born
 - *Innovation:* new ideas are then developed into commercially viable products
 - Often, these two stages of technological change are lumped together under the rubric of research and development (R&D)

- Technological change proceeds in three stages:
 - Invention: an idea must be born
 - *Innovation:* new ideas are then developed into commercially viable products
 - Often, these two stages of technological change are lumped together under the rubric of research and development (R&D)
 - Diffusion: to have an effect on the economy, individuals must choose to make use of the innovation

- Technological change is uncertain
 - We don't know whether research will be successful, or which projects will be successful
 - This suggests that a diversified strategy is desirable
 - "Picking winners" can be costly

- At all three stages, market forces provide insufficient incentives for the development and diffusion of environmentally-friendly technologies
 - Environmental Externalities
 - Addressed by environmental policy (e.g. *demand-pull* policies)

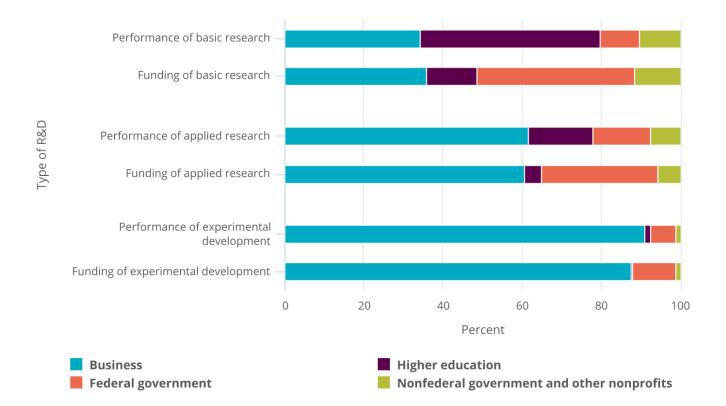
- At all three stages, market forces provide insufficient incentives for the development and diffusion of environmentally-friendly technologies
 - Environmental Externalities
 - Knowledge as a Public Good
 - New technologies must be made available to the public for the inventor to profit
 - When this happens, some or all of the knowledge that makes up the invention also becomes available to the public.
 - Public knowledge may lead to knowledge spillovers—additional innovations, or even to copies of the current innovations, that provide benefits to the public as a whole, but not to the innovator
 - Addressed by science and technology policy (e.g. technology-push)
 - May be general (IP) or specific (subsidies for renewable R&D)

- Implications of knowledge spillovers:
 - Underprovision of R&D
 - Firms invest in R&D until the marginal private rate of return equals the marginal cost
 - Thus, even if environmental externalities are corrected, there will still be insufficient R&D
 - Studies typically find that the social returns to R&D are about
 4X higher than the private returns to R&D.

- Implications of knowledge spillovers:
 - Underprovision of R&D
 - Firms invest in R&D until the marginal private rate of return equals the marginal cost
 - Thus, even if environmental externalities are corrected, there will still be insufficient R&D
 - Studies typically find that the social returns to R&D are about
 4X higher than the private returns to R&D.
 - Opportunity costs are important
 - This high social rate of return is true for all R&D, not just environmental R&D
 - Thus, if we design policy to enhance environmental R&D, we must consider where those resources come from

- Because of the public goods nature of knowledge, government policies are used to foster invention and innovation:
 - Intellectual property rights (e.g. patents, copyrights)
 - Give inventors a temporary monopoly, which enables them to capture more of the returns to their invention
 - In return, the patent document makes the invention public
 - As such, not every inventor chooses to patent an invention
 - Because of the temporary monopoly, patents encourage innovation, but slow diffusion

- Because of the public goods nature of knowledge, government policies are used to foster invention and innovation:
 - Government R&D funding
 - The government can provide research funding to firms and universities, or can perform research itself in government laboratories
 - Many of the government laboratories are for the Department of Energy (DOE)
 - 2022 Data
 - Federal R&D funding \$159.8 billion (18% of total US R&D)
 - » \$47.0 b performed directly by govt.
 - » \$27.3 b performed by industry
 - » \$25.8 b performed by FFRDCs
 - » \$47.7 b performed by universities
 - » \$11.7 b performed by nonprofits



- Because of the public goods nature of knowledge, government policies are used to foster invention and innovation:
 - Government R&D funding
 - Government funding gives the government more control over the type of R&D done.
 - Government funding is particularly useful when spillovers are large
 - For example, basic research that cannot be patented and/or embodied in a proprietary product
 - Basic research can complement research done by firms
 - For example, DOE labs often include public/private partnerships to help commercialize new technologies

Figure 15

U.S. R&D performance and funding, by type of R&D and sector: 2021

Note(s):

Some data for 2021 are preliminary and may be revised later.

Source(s):

NCSES, National Patterns of R&D Resources (2021-22 edition).

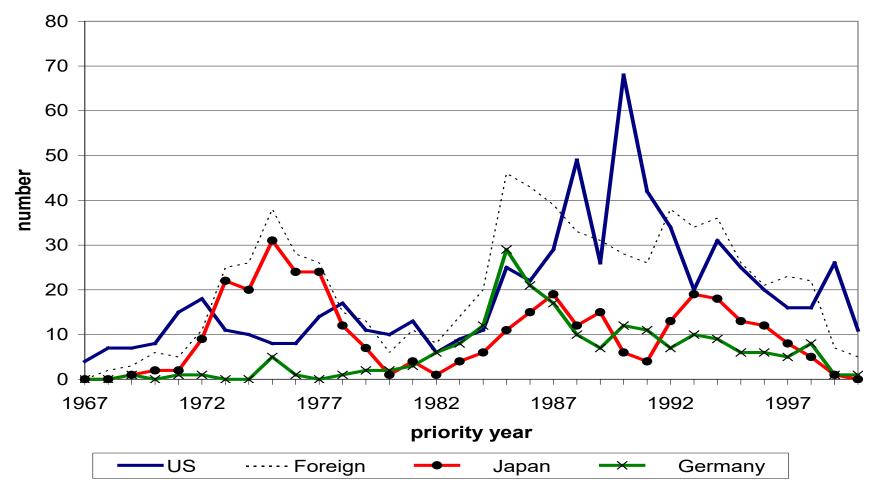
Indicators 2024: R&D

- Because of the public goods nature of knowledge, government policies are used to foster invention and innovation:
 - Tax credits
 - Tax credits lower the cost of R&D for firms
 - However, they give the government less control over the projects done
 - Firms will still choose to do the most profitable projects first, so tax credits are unlikely to stimulate basic research

- Because of the public goods nature of knowledge, government policies are used to foster invention and innovation:
 - Prizes
 - Only paid out if a goal is met
 - If goal broadly defined, avoids "picking winners" among alternative solutions
 - Transfers risk from government to firms that do the R&D
 - If risk is significant, large prizes will be needed to get firms to take on this risk

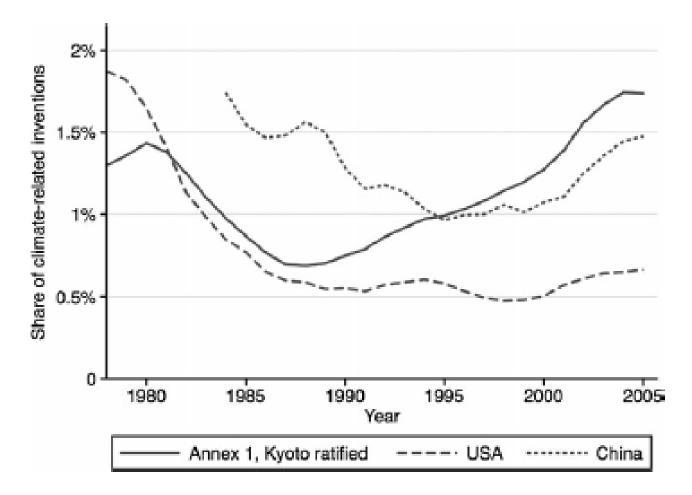
Innovation & Environmental Policy

- Both environmental policy and R&D policy are needed
 - Environmental policy creates a demand for clean technologies
 - This demand creates incentives for climate-friendly innovation
- R&D policy can help lower the costs of climate policies
 - While R&D policy plays a role, it is not a substitute for environmental policy
 - R&D policy can help with the *development* of technologies, but not with the *diffusion* of technologies
 - important for innovation as well, as firms need to know there will be a market for new products

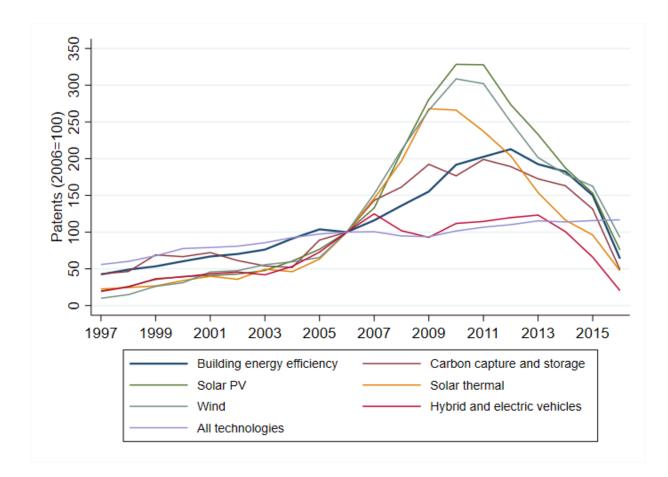


The Role of Policy: Private Sector Innovation

- Innovation responds quickly to incentives
 - Newell *et al.* (1999) & Popp (2002) both find most of the response of R&D to higher energy prices occurs within 5 years
 - Responses to policy are even faster


U.S. NO_x Post-Comb. Treatment Patents

Source: Popp (2006)


Innovation and Climate Policy

Source: Dechezleprêtre et al. (REEP, 2011)

Clean energy patents over time

Source: Popp et al. (2022)

SYRACUSE UNIVERSITY Maxwell School of Citizenship and Public Affairs

The Role of Policy: Private Sector Innovation

- Higher energy prices help encourage investment in alternatives, but they are not a substitute for environmental policy
 - Energy efficiency innovations may cause a rebound effect
 - Higher energy prices also encourage the search for more fossil fuels. Some of these, such as oil sands, even produce more carbon emissions.
 - In contrast, policies addressing emissions change the relative price of fossil fuels, so that cleaner sources become more competitive.
- *Question:* How might the current energy shock be different?

- Economists tend to prefer market-based regulation over command-and-control options
 - Minimize compliance costs
 - Provide greater incentives for innovation
 - Command-and-control regulation provides incentives to meet, but not exceed, standards (Popp, JPAM, 2003)
 - In contrast, market-based options provide rewards for continual improvement

- However, policy distinctions can be subtler: *Technology neutral*
 - Carbon tax
 - Cap-and-trade
 - Renewable Energy Certificates/Renewable Portfolio Standards

Technology-specific

- Feed-in tariffs
- Renewable auctions
- Investment subsidies
- Technology mandates

- Policies that let the market "pick winners" will focus research efforts on technologies closest to market (Johnstone *et al.* 2010)
 - Renewable energy mandates => wind innovation
 - Guaranteed prices (e.g. feed-in tariffs) => solar innovation
 - Consider, for example, solar energy in Germany
- However, policies that promote specific technologies may increase short-run compliance costs
 - Government R&D emerges as an option to support longterm research needs

- Solutions?
 - Use government R&D to support long-term research needs (Acemoglu et al., JPE 2016)
 - Combine broad-based policies with limited subsidies for technologies furthest from market (Fischer *et al., JAERE* 2017)
 - Most effective if target other market failures

- The presence of other market failures inform policy choice
 - Capital market failures
 - Energy innovations take longer to get to market (Popp, Res. Policy, 2017)
 - Often have large fixed costs
 - Government support can help overcome funding hurdles
 - US Dept. of Energy SBIR grant recipients 2X as likely to receive subsequent venture capital, produce more patents, & earn more revenue (Howell, AER 2017)

- The presence of other market failures inform policy choice
 - Capital market failures
 - Path dependency
 - Two issues
 - Network effects: Developing charging infrastructure is necessary before consumers will purchase electric vehicles
 - » The private sector won't develop charging infrastructure until there are enough electric vehicles on the road to make investment profitable
 - ⇒early adopters of electric vehicles provide external benefits through network effects, justifying subsidies

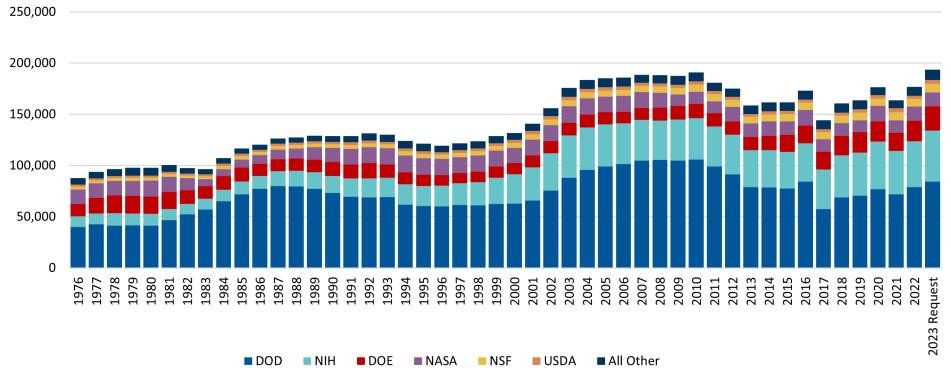
- The presence of other market failures inform policy choice
 - Capital market failures
 - Path dependency
 - Two issues
 - Network effects: Developing charging infrastructure is necessary before consumers will purchase electric vehicles
 - » The private sector won't develop charging infrastructure until there are enough electric vehicles on the road to make investment profitable
 - ⇒early adopters of electric vehicles provide external benefits through network effects, justifying subsidies
 - Path dependent innovation: Existing knowledge matters
 - » Prior success in fossil fuel research makes it more difficult for new technology to compete

- The presence of other market failures inform policy choice
 - Capital market failures
 - Path dependency
 - Learning-by-doing
 - Experiences of early entrants provide lessons for future technology development
 - Justifies additional deployment policies (e.g. tax credits)
 - But LBD effects are small (Nemet, JPAM 2012; Tang, Energy Policy 2018)
 - Nemet (JPAM 2012): LBD exists , but learning is subject to diminishing returns and decays quickly
 - Fischer *et al.* (*JAERE*, 2017): R&D market failures more important than LBD, so R&D spending more effective than targeted deployment policies
 - » But current U.S. policies favor deployment

- The presence of other market failures inform policy choice
 - Capital market failures
 - Path dependency
 - Learning-by-doing
 - Knowledge spillovers: are they different for energy?
 - Clean patents generate larger knowledge spillovers than the dirty technologies they replace (Dechezleprêtre et al., working paper 2017)
 - Justifies increased government funding for clean energy R&D

- Innovation market failures require government support for R&D
 - Federal R&D spending
 - Government funds particularly useful for basic research
 - Want to avoid duplicating what the private sector is working on
 - Even for applied research, there are some end use technologies that serve a public good, and thus will not be pursued by private industry
 - Storage of nuclear waste
 - Testing repositories for carbon dioxide sequestration
 - Improving the electrical grid to manage intermittent flows from wind and solar

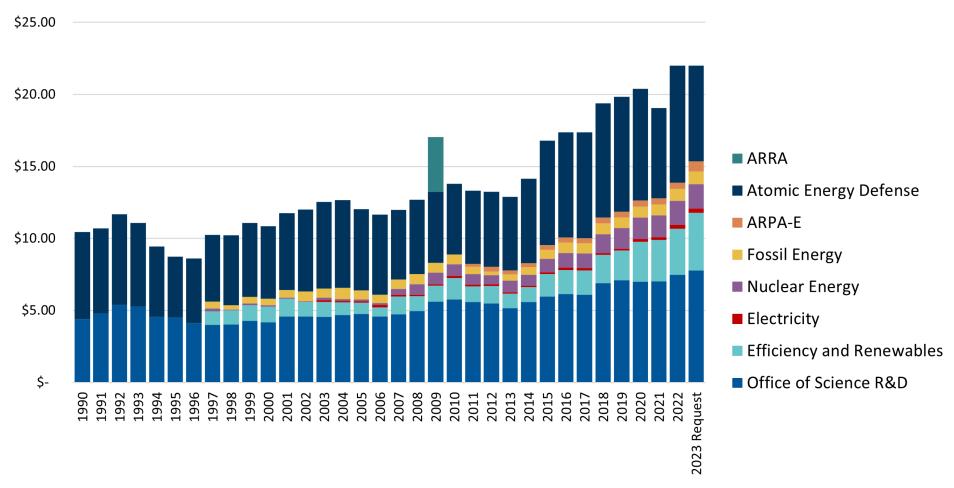
- Innovation market failures require government support for R&D
 - Federal R&D spending
 - Adjustment costs are important
 - Limits to how much we can spend on green R&D are likely to come not from the number of deserving projects, but rather from limits of the existing research infrastructure
 - US NIH experience is an example
 - Budget doubled between 1998-2003
 - Adjustment costs were high (including NIH administrative costs)
 - Funds were then cut
 - » Real NIH spending 6.6% lower in 2007 than in 2004
 - » More competition for jobs among recent post-docs
 - » Researchers spend more time writing grants


- Historically, energy R&D in the U.S. has focused on increasing energy supplies
 - Dramatic increases in the amount of recoverable resources have occurred
 - Motivated by goals of energy security and lowering prices
 - Civilian nuclear energy was developed as a result of military R&D investments
 - Rapid growth occurred in 1970s, before Three Mile Island
 - High capital costs are also a concern
 - Nonetheless, research on nuclear continues

David Popp

Trends in R&D by Agency

in billions of constant FY 2022 dollars



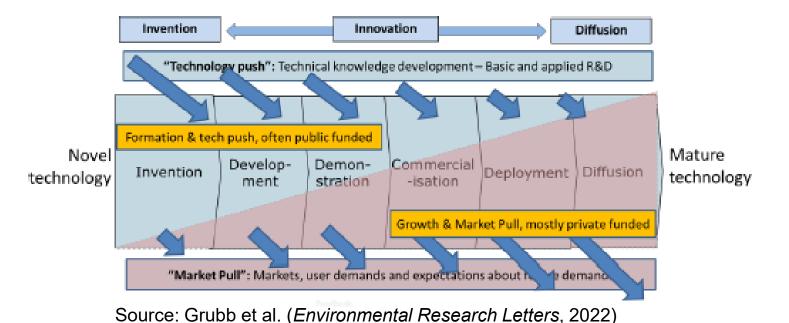
Source: historical AAAS analyses of OMB and agency R&D budget data and documents. Includes conduct of R&D and R&D facilities| AAAS 2022

Source: AAAS, http://www.aaas.org/page/historical-trends-federal-rd

Trends in DOE R&D, FY 1990-2023

in billions of constant FY 2022 dollars

Source: Agency budget data. Constant dollar conversions based on OMB's GDP deflators from the FY 2023 budget | AAAS 2022


- Many early energy investments went to large scale projects that did not materialize
 - Synfuels are a failed example from the 1970s
 - However, consider that uncertainty is a part of R&D
 - Note that government can diversity risk better than private sector
 - NRC study: While only a handful of DOE programs from 1978-2000 were successful, those that were had benefits high enough to justify the cost of the entire R&D portfolio
 - The successful projects were primarily energy efficiency (refrigerators, CFL)
 - Efforts to develop energy supplies were not successful (\$6 billion costs vs. \$3.4 billion benefits)
 - Focused on a narrow set of technologies
 - Funding continued for political reasons even after early failures

- The DOE's Advanced Research Projects Agency-Energy (ARPA-E) is an example of a government agency that has successfully promoted and managed high-risk, high-reward innovation
 - Requires research teams to set clear, measurable goals through various stages of research
 - Gives program directors the ability to terminate or redirect projects not achieving these predetermined milestones
 - Takes the decision to end funding out of the hands of politicians, making it easier to support more high-risk/high-reward projects

- Technology transfer is also important
 - A common concern among energy experts is the "Valley of Death"
 - Projects reach demonstration stage, but are not able to improve sufficiently to become commercialized

• Raising private capital for clean energy technology can be difficult. Why?

David Popp

- Raising private capital for clean energy technology can be difficult. Why?
 - Energy innovations take longer to get to market (Popp, Res. Policy, 2017)
 - Often have large fixed costs
 - Difficulty with product differentiation may make large returns unlikely (van den Heuvel and Popp, NBER WP, 2022)
 - Tesla vs. solar panels

- Raising private capital for clean energy technology can be difficult. Why?
 - Energy innovations take longer to get to market (Popp, Res. Policy, 2017)
 - Often have large fixed costs
 - Difficulty with product differentiation may make large returns unlikely (van den Heuvel and Popp, NBER WP, 2022)
 - Tesla vs. solar panels
 - Government support can help overcome funding hurdles
 - US Dept. of Energy SBIR grant recipients 2X as likely to receive subsequent venture capital, produce more patents, & earn more revenue (Howell, *AER* 2017)

- Raising private capital for clean energy technology can be difficult. Why?
 - Energy innovations take longer to get to market (Popp, *Res. Policy*, 2017)
 - Often have large fixed costs
 - Difficulty with product differentiation may make large returns unlikely (van den Heuvel and Popp, NBER WP, 2022)
 - Tesla vs. solar panels
 - Government support can help overcome funding hurdles
 - US Dept. of Energy SBIR grant recipients 2X as likely to receive subsequent venture capital, produce more patents, & earn more revenue (Howell, AER 2017)
 - However, demand still matters
 - Early stage ARPA-E awards did not increase probability of exit (Goldstein *et al., Nature Energy*, 2020)
 - Changing policy expectations affect VC investment (van den Heuvel and Popp, NBER WP, 2022)

David Popp

- Government funding can also new technologies overcome roadblocks to commercialization
 - Technology transfer increased after change in direction of energy R&D in the 1980s
 - Technology transfer slower when research is more basic or has national security implications
 - Patents that cite government patents (e.g. children) are most highly cited, suggesting technology transfer creates benefits (Popp 2006)

- Government funding can also help new technologies overcome roadblocks to commercialization
 - Technology transfer increased after change in direction of energy R&D in the 1980s
 - Technology transfer slower when research is more basic or has national security implications
 - Patents that cite government patents (e.g. children) are most highly cited, suggesting technology transfer creates benefits (Popp 2006)
 - Research on renewable energy sources produced by government institutions has been particularly helpful moving alternative energy research to an applied stage (Popp, *Research Policy*, 2017)
 - Government articles not more likely to be cited by other articles, but are more likely to be cited by other patents

- How does government R&D aid commercialization?
 - Helps new energy technologies overcome roadblocks to commercialization (Mowrey et al., *Research Policy* 2010, Weyant, *EngEcon* 2011)
 - Large capital expenses leave a role for collaboration with the public sector to both provide support for initial project development and for demonstration projects
 - Advances in wind turbines were aided by U.S. Department of Energy-sponsored innovation on multiple turbine components
 - Funding complemented private sector efforts and allowed for feedback between public and private sector researchers

Which mix of policies should be used?

- While R&D policy plays a role, it is not a substitute for environmental policy
 - Popp (2006) examines gains from carbon tax & R&D subsidies
 - Only using carbon tax => 95% of welfare gain of both
 - Only using R&D subsidy => 11% of welfare gain of both
 - Fisher & Newell (2008) rank emission-reducing policies:
 - (1) emissions price, (2) emissions performance standard, (3) fossil power tax, (4) renewables share requirement, (5) renewables subsidy, (6) R&D subsidy
 - However, a portfolio of policies, including R&D subsidies, outperforms any single policy
 - Fisher et al. (2017)
 - R&D market failures more important than LBD
 - Thus, R&D spending more effective than targeted deployment policies
 - But, current policy favors deployment

David Popp